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< Tabular Dataset 2| Z-&0]A|
« N=RO|AM HOlH= H5FZE Table FE{2| HO|H
» ERP: enterprise resource planning
« MES: Manufacturing Execution Systems
* P/C: Process Computer

* PLC: Programmable Logic Controller / DCS: Distributed Control System
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AL MES

n n n EXECUTION
—— SYSTEM
AS PLC P/C MES ERP
AMZt | value AlZt | value AlZF | value HE | 22 HZE | 47}
0:00:01 20 0:00:01 20 00~01 17 A X A 100
0:00:02 20 0:00:02 20 01~02 16 B X B 120
0:00:03 14 0:00:03 14 02~03 15 C X C 130
0:00:04 15 0:00:04 15 03~04 19 D X D 110
0:00:05 19 0:00:05 19 04~05 0 E @) E 3000
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Comparison of deep learning methods for tabular dataset

/

< Paper : Deep Neural Networks and Tabular Data : A Survey
- Borisov, V., Leemann, T., SeRler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022.06). (482
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Deep Neural Networks and Tabular Data: A Survey

Vadim Borisov, Tobias Leemann, Kathrin SeBler, Johannes Haug,
Martin Pawelczyk and Gjergji Kasneci

[cs.LG] 29 Jun 2022

,‘
J
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Abstraci—Heterogeneous tabular data are the most commonly
used form of data and are essential for numerous critical and
computationally demanding applications. On homogeneous data
sets, deep neural networks have repeatedly shown excellent
performance and have therefore been widely adopted. However,
their adaptation to tabular data for inference or data generation
tasks remains highly challenging. To facilitate further progress
in the field, this work provides an overview of state-of-the-art
deep learning methods for tabular data. We categorize these
methods into three groups: data transformations, specialized

hil es, and r models. For each of these
grnups, our work offers a comprehensive overview of the main
approaches. Moreover, we discuss deep learning approaches for
generating tabular data, and we also provide an overview over
strategies for explaining deep models on tabular data. Thus, our
first contribution is to address the main research streams and

existing in the areas, while
relevant challenges and open researtll qu.esﬂnns. Our second
contribution is to provide an of traditional

contrast to image or language data - are heterogeneous, leading
to dense numerical and sparse categorical features. Furthermore,
the correlation among the features is weaker than the one
introduced through spatial or semantic relationships in image
or speech data. Hence, it is necessary to discover and exploit
relations without relying on spatial information [9]. Therefore,
Kadra et al. called tabular data sets the last “wunconguered
castle” for deep neural network models [10].

Heterogeneous data are the most commonly used form of
data [7], and it is ubiguitous in many crucial applications,
such as medical diagnosis based on patient history [11]-[13].
predictive analytics for financial applications (e.g., risk analysis,
estimation of creditworthiness, the recommendation of invest-
ment strategies, and portfolio management) [14], click-through
rate (CTR) prediction [15], user recommendation systems [16],
churn prediction [17], [18], cybersecurity [19], fraud

machine learning methods with eleven deep learning approaches
across five popular real-world tabular data sets of different sizes
and with different learning objectives. Our results, which we
have made publicly available as competitive benchmarks, indicate
that algorithms based on gr b d tree still
mostly outperform deep learning models on supervised learning
tasks, suggesting that the research progress on competitive deep
learning models for tabular data is stagnating. To the best of our
knowledge, this is the first in-depth overview of deep learning
approaches for tabular data; as such, this work can serve as
a valuable starting point to guide researchers and practitioners
interested in deep learning with tabular data.

Index Terms—Deep neural neiworks, Tabular data, Heieroge-
nmns d.na, Discrete data, Tabular datn generation, Probabilistic
ility, Bench Survey

I INTRODUCTION

Ever-increasing computational resources and the availability
of large, labelled data sets have accelerated the success of deep
neural networks [1], [2]. In particular, architectures based on
convolutions, recurrent mechanisms [3], or transformers [4]
have led to unprecedented performance in a multitude of do-
mains. Although deep leamning methods perform outstandingly
well for classifi or data g ion tasks on h
data (e.g., image, audio, and text data), tabular data still pose
a challenge to deep learning models [5]-[8]. Tabular data - in

detection [20], identity protection [21], psychology [22]. delay
estimations [23], anomaly detection [24], and so forth. In
all these applications, a boost in predictive performance and
robustness may have considerable benefits for both end users
and companies that provide such solutions. Simultaneously,
this requires handling many data-related pitfalls, such as noise,
impreciseness, different attribute types and value ranges, or the
missing value problem and privacy issues.

Meanwhile, deep neural networks offer multiple advantages
over traditional machine learning methods. First, these methods
are highly flexible [25]. allow for efficient and iterative
training, and are particularly valuable for AutoML [26]-[31].
Second, tabular data generation is possible using deep neural
networks and can. for instance, help mitigate class imbalance
problems [32]. Third. neural networks can be deployed for
multimodal learning problems where tabular data can be one
of many input modalities [28]. [33]-[36], for tabular data
distillation [37], [38], for federated learning [39], and in many
MOTE SCENArios.

Successful deployments of data-driven applications require
solving several tasks, among which we identified three core
challenges: (1) inference (2) data generation, and (3) in-
terpretability. The most crucial task is inference which is
concerned with making predictions based on past observations.
While a powerful predictive model is critical for all the
aonlications mentioned in the orevious paraeraph. the interolav



Deep Neural Networks and Tabular Data
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Specialized Architectures

Tabular DataOf]| M 22 El 7+ & AL

Hybrid Models

- Hybrid: 28 & Q1 7| A|5tE + NN

Fully differentiable

| Parily differentiable

- Transformer : Attention Mechanism AfE
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Deep Neural Networks and Tabular Data

Method Interpretability Key Characteristics

SuperTML [8#7] Transform tabular data into images for CNMNs
E" VIME [#E] Sclf-supervised leaming and contextual embedding
E IGTD [#0] Transform tabular data into images for CINMNs
- SCARF [89] Self-supervised contrastive leaming

WidediDeep [W] Embedding layer for categorical features

DeepFM [15] Factorization machine for categorical data
S5DT [91]) o Distill newral network into interpretable decision free
- xDecpFM [92] Compressed interaction network
',E TabMMN [93] DNNs based on feature groups distilled from GBDT
f_ DeepGBM [70] Two DNM=, distill knowlegde from decision iree
E KODE [6] Differentiahle oblivious decision trees ensemhble
_E NON [94] Metwork-on-network model
E DNMNZLR [95] Calculate cross feature wiclds with DNNs for LR
MNet-DNF [57]) Structure based on disjunctive normal form
Boost-GMN [W%] GMNM on top decision trees from the GBDT algorithm
S5DTR [97] Hierarchical differentiable newral regression model
) TabMet [5] " Sequential attention structure
g E TebTransformer [9) o Transformer network for categorical data
E -E SAINT [9] W Attention over both rows and columns
E E ARM-Met [9] Adaptive relational modelling with multi-headgated attention network
Mon-Param. Transformer | 108] Process the entire dataset at once, use attention between data points
E RLN [72] W Hyperparameters regularization scheme
= Regularized DMNMNs [10] A Tcocktall” of regularization technigues
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Deep Neural Networks and Tabular Data

< Deep Learning ZH H| W E flot A&

[Data Set]
HELOC  Adult HIGGS Covertype  California
Income Housing
Samples 9.871 32.561 11 M. 581.012 20.640
Num. features 21 6 27 52 8
Cat. features 2 8 1 2 0
Task Binary  Binary Binary Multi-Class  Regression
Classes 2 2 2 7 -
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Deep Neural Networks and Tabular Data

< DEE Al H| W (Bold: Top, under line : second)

HELOC Adult HIGGS Covertype Cal. Housing
Acc T AUC T Acc T AUC 1 Acc T AUC 1T Acc T AUC T MSE |

Linear Model 73.0£0.0 80.10.1 825+0.2 854202 64.1+0.0 68.41+0.0 724£0.0 92.84+0.0 0.52830.008
KNN [65] 72.2£0.0 79.0+0.1 83202 87502 62310.1 67.10.0 70.2+0.1 90.1+0.2 0.421+0.009
Decision Tree [197] 80.3+0.0 89.31+0.1 85.3+0.2 89.8+0.1 71.3+0.0 78.7+0.0 79.1+0.0 95.0+0.0 0.404+0.007
Random Forest [198] 82102 90.040.2 86.10.2 91.7£0.2 719100 79.7+0.0 78.1£0.1 96.1+0.0 0.272+0.006
XGBoost [53] 83.5+0.2 92.240.0 87.3+0.2 92.8+0.1 77.61+0.0 85.9+0.0 97.31+0.0 99.94-0.0 0.206+0.005
LightGBM (78] 83.510.1 92.310.0 87.4+0.2 92.9+0.1 77.1+£0.0 85.5+0.0 93.5+0.0 99.71+0.0 0.1950.005
CatBoost [79] 83.60.3 92.410.1 87.2+0.2 92.8+0.1 77.5+0.0 85.8+0.0 96.420.0 99.81+0.0 0.1960.004
Model Trees [199] 82.6+0.2 91.54+0.0 85.0+0.2 90.4+0.1 69.8+0.0 76.7+0.0 - - 0.385+0.019
MLP [200] 73.2£03 80.3+0.1 84.8+0.1 90.3x0.2 77.1+£0.0 85.60.0 91.0£04 76.1£3.0 0.2630.008
DeepFM [15] 73.6+0.2 80.440.1 86.1+0.2 91.7+0.1 76.91+0.0 83.4+0.0 - - 0.260+0.006
DeepGBM [70] 78.0£0.4 84.10.1 84603 90.8£0.1 745100 83.0+0.0 - - 0.8560.065
RLN [72] 732104 80.1+0.4 81.0x1.6 759L8.2 71.8+0.2 79.41+0.2 77.2£1.5 92.0£0.9 0.348+0.013
TabNet [5] 81.0+0.1 90.010.1 85.4+0.2 91.1+0.1 76.5+1.3 849+1.4 93.1+0.2 99.440.0 0.346+0.007
VIME [88] 72.7£0.0 79.2+0.0 84.8+0.2 90.5£0.2 76.91+0.2 85.5+0.1 90.9+0.1 829107 0.2750.007
TabTransformer [98] 73.3x0.1 80.1+0.2 85.2+0.2 920.60.2 73.8+0.0 81.9+0.0 76503 729+23 0.451+0.014
NODE [6] 79.8+0.2 87.54+0.2 85.6+0.3 91.1+0.2 76.9+0.1 85.4+0.1 89.9+0.1 98.7+0.0 0.276+0.005
Net-DNF [57] 826104 91.54+0.2 85.7+0.2 91.3£0.1 76.610.1 85.1+0.1 94.240.1 99.1+0.0 -
STG [201] 73.1x0.1 80.0+0.1 85.4x0.1 90.9£0.1 73.91+0.1 81.9+0.1 81803 96.21+0.0 0.285+0.006
NAM [202] 73.3+0.1 80.7+0.3 83.4+0.1 86.6+0.1 539+0.6 550+£1.2 - - 0.725+0.022
SAINT [9] 82103 90.71+0.2 86.1£0.3 91.6£0.2 79.81+0.0 88.310.0 96.310.1 99.81+0.0 0.2260.004
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Deep Neural Networks and Tabular Data

< Deep Learning 2 &'H Z1} H|w

XGBoost
® .C aiBoost ® CatBoost @ XGBoost
0.87 0.87
Random Forest DeepFM SAINT DeepFM Random Forest SAINT
0.86 ‘ @ - NODE 0.86 @  Net-DNF
Decision Tree Net-DNRg TabNet g it Decision Tree STG @ TwbTransformer @ NODE
0.85 el ks 7 " o ass -2 T TN @ @
g‘ 4 Model Trees pALY VIME g‘ e Model Trees B NP
§ 0.84 DeepGBM § 0.84 DeepGBM i
= KNN = KNN
0831 Lincar Model A 0831 Lincar Model
0.82 0.82
RLN RLN
0.81 0.81
1072 10-! 10° 10! 10? 102 10~} 10° 10!
Training time (seconds) Inference time (seconds)

Fig. 3: Train (left) and inference (right) time benchmarks for selected methods on the Adult data set with 32.561 samples. The
circle size reflects the accuracy standard deviation.

SAINT
0.50 SAINT 0.80
0.78 VIME CatBoost XGBoost
s XGBoost  CatBoost VIME MLP by ) °
° ® DecpFM
NODE TabNet g
2 MLP 0.76
9 o 0. Net-DNF
B0 Net-DNF g i) TabNet
3] 2 STG
2 Py TabTransformer 2074 Tab Transformer
074 @ pecpm o : .
RIN RLN
o Random Forest g Random Forest
0.72 Decision Tree ® 0.72 1 pecision Tree
® e
Model T .
0.70 s 070 Model Trees
10? 10° 10¢ 108 100 10° 10! 10? 108
Training time (seconds) Inference time (seconds)

Fig. 4: Train (left) and inference (right) time benchmarks for selected methods on the HIGGS data set with 11 million samples.
The circle size reflects the accuracy standard deviation.
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Deep Neural Networks and Tabular Data
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Tabular Datas 22 &
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= —

| £2 45 (XGBoost, LightGBM, CatBoost)
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Comparison of deep learning methods for tabular dataset

% Paper : TABULAR DATA: DEEP LEARNING IS NOT ALL YOU NEED
e Shwartz-Ziv, R., & Armon, A. (2021). Information Fusion, 81, 84-90.(1243| 21&

TABULAR DATA: DEEP LEARNING IS NOT ALL YOU NEED

Ravid Shwartz-Ziv Amitai Armon
ravid.ziv@intel.com amitai.armon@intel.com
IT AI Group, Intel IT Al Group, Intel
o
o November 24, 2021
N

- ABSTRACT

o
-z A key element in solving real-life data science problems is selecting the types of models to use.

i Tree ensemble models (such as XGBoost) are usually rec ded for classification and i
((\ l‘ problems with tabular data. However, several deep learning models for tabular data have reccnlly been

proposed, claiming to outperform XGBoost for some use cases. This paper explores whether these
— deep models should be a recommended option for tabular data by rigorously comparing the new deep
C models to XGBoost on various datasets. In addition to systematically comparing their performance,
] we consider the tuning and compul;\lmn lhev mqulrc Our study shows that XGBoost outperforms
'ﬁ these deep models across the d. the datasets used in the papers that proposed the
‘_/j deep models. We also demonstrate that XGBoost requires much less tuning. On the positive side, we
show that an ensemble of deep models and XGBoost performs better on lhesc datasets than XGBoost
alone.
(|
(_; Keywords Tabular data - Deep neural networks - Tree-based models - Hyperparameter optimization
)
U}
™ 1 Introduction
on
e Deep neural networks have demonstrated great success across various domains, including images, audio, and text
,\2 [Devlin et al., 2019, Hc et al., 2016, van den Oord et al., 0]6] There are several canonical architectures for encoding
N raw data into ful rep ions in these d s. These canonical architectures usually perform well in
; real-world applications.

o In real-world applications, the most common data type is tabular data, comprising samples (rows) with the same
. — set of features (columns). Tabular data is used in practical applications in many fields, including medicine, finance,
x manufacturing, climate science, and many other applications that are based on relational databases. During the last

o) decade, traditional hine learning hods, such as gradient-boosted decision trees (GBDT) [Chen and Guestrin,

<

2016], still dominated tabular data modeling and showed superior performance over deep learning. In spite of their
theoretical advantages [Shwartz-Ziv et al., 2018, Poggio et al.. 2020, Piran et al.. 2020}, deep neural networks pose
many challenges when applied to tabular data, such as lack of locality, data sparsity (missing values), mixed feature
types (numerical, ordinal, and categorical), and lack of prior knowledge about the dataset structure (unlike with text
or images). Moreover. deep neural networks are perceived as a "black box" approach — in other words, they lack
transparency or interpretability of how input data are transformed into model outputs [Shwartz-Ziv and Tishby, 2017].
Although the “no free lunch” principle [Wolpert and Macready, 1997] always applies, tree-ensemble algorithms, such
as XGBoost, are considered the recommended option for real-life tabular data problems [Chen and Guestrin, 2016,
Friedman, 2001, Prokhorenkova et al., 2018a].
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Dataszet

Gesture Phase

Gas Concentrations
Eye Movements
Epsilon
YearPrediction
Microsoft (MSLR)
Rossmann Store Sales
Forest Cover Type
Higgs Boson
Shrutime

Blastchar

1

Features

32

139

26

2000

=l

136

10

30

11

20

[Data Set]

Classzes

*-]

Samples
0.8k
13.9%k
10.9k
500k
515k
054l
1018K
580k
800k
10k

7k

Source

OpenML

OpenML

OpenML

PASCAL Challenge 2008
Millicn Song Dataset
MELR-WEE1CKE
Kaggle

Kaggle

Kaggle

Kaggle

Kaggle

Paper
DNF-Net
DNE-Net
DNF-Net
NODE
NODE
NODE
TzbNet
TabNet
TzbNet
New dataset

MNew dataset

21



TABULAR DATA: DEEP LEARNING IS NOT ALL YOU NEED

o DU HDE 93 A

Model Name Rossman CoverType Higgs Gas Eye Gesture

XGBoost 490.18+1.19 3.13+0.09 21.62+0.33 2.18 £0.20 56.07+0.65 &80.64 £ 0.80
NODE 488.59+1.24 4.154+0.13 21.19+£0.69 2.17£0.18 6835+£0.66 92.12+0.82
DNF-Net 503.83 +1.41 3.96+0.11 23.68+0.83 1.444+0.09 68.38+0.65 86.98+0.74
TabNet 485.12+1.93 3.01+0.08  21.144+0.20 1.92+0.14 67.13+0.69 96.42 + 0.87
1D-CNN 493.81 +£2.23 3514+0.13 2233+£0.73 1.79+£0.19 67.9+£0.64 97.89+0.82
Simple Ensemble 488.57+2.14 3.19+0.18 2246+0.38 2.36+£0.13 5H872+£0.67 89.45+0.89
Deep Ensemble w/o XGBoost 489.94 +2.09 3.52+4+0.10 22.414+0.54 1.98+0.13 69.28+0.62 93.50+0.75
Deep Ensemble w XGBoost 485.33+1.29 299 +0.08 2234+0.81 1.69+0.10 59.43+0.60 78.93 +0.73

TabNet DNF-Net

Model Name YearPrediction @ MSLR Epsilon Shrutime Blastchar

XGBoost 7798 +0.11 55.43+2e-2 11.124+3e-2 13.82+0.19 20.39 +£0.21
NODE 76.39 £0.13 55.72+3e-2 10.39+1e-2 14.61 £ 0.10 21.40 £ 0.25
DNF-Net 81.21 +£0.18 56.83+3e-2 12.234+4e-2  16.8 +0.09 27.91 £0.17
TabNet 83.19 £ 0.19 56.04+£1e-2 11.924+3e-2  14.94+,0.13 23.72£0.19
ID-CNN 7894 +0.14 55.97+4e-2 11.08+6e-2 15.31 +=0.16 24.68 £+ 0.22
Simple Ensemble 78.01 =0.17  55.46+4e-2 11.07t4e-2  13.614,0.14 21.18 £ 0.17
Deep Ensemble w/o XGBoost 78.99 £0.11 55.59%3e-2 10.95+1e-2  14.69 = 0.11 24.25 £0.22
Deep Ensemble w XGBoost 76.19 +0.21 55.38+1e-2 11.18+1e-2  13.10+0.15 20.18+0.16

NODE New datasets
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TABULAR DATA
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Comparison of deep learning methods for tabular dataset

< Paper : Why do tree-based models still outperform deep learning on tabular data?
* Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). preprint arXiv:2207.08815. (52| 21 &)

Why do tree-based models still outperform deep
learning on tabular data?

Léo Grinsztajn Edouard Oyallon Gaél Varoquaux
Soda, Inria Saclay ISIR, CNRS, Sorbonne University Soda, Inria Saclay
leo.grinsztajn@inria.fr

Abstract

While deep learning has enabled tremendous progress on text and image datasets,
its superiority on tabular data is not clear. We contribute extensive benchmarks of
standard and novel deep learning methods as well as tree-based models such as
XGBoost and Random Forests, across a large number of datasets and hyperparame-
ter binati We define a fard set of 45 datasets from varied domains with
clear characteristics of tabular data and a benchmarking methodology accounting
for both fitting models and finding good hyperparameters. Results show that tree-
based models remain state-of-the-art on medium-sized data (~10K samples) even
without accounting for their superior speed. To understand this gap, we conduct an
empirical investigation into the differing inductive biases of tree-based models and
Neural Networks (NNs). This leads to a series of challenges which should guide
researchers aiming to build tabular-specific NNs: 1. be robust to uninformative
features, 2. preserve the orientation of the data, and 3. be able to easily learn
irregular functions. To stimulate research on tabular architectures, we contribute a
standard benchmark and raw data for baselines: every point of a 20 000 compute
hours hyperparameter search for each learner.

vl [cs.LG] 18 Jul 2022

5

1 Introduction

Deep learning has enabled tremendous progress for learning on image, language, or even audio
datasets. On tabular data, however, the picture is muddier and ensemble models based on decision
trees like XGBoost remain the go-to tool for most practitioners [Sta] and data science competitions
[Kossen et al., 2021]. Indeed deep learning architectures have been crafted to create inductive biases
matching invariances and spatial dependencies of the data. Finding corresponding invariances is hard
in tabular data, made of heterogeneous features, small sample sizes, extreme values.

rXiv:2207.0881

<

Creating tabular-specific deep learning architectures is a very active area of research (see section 2)
given that tree-based models are not differentiable, and thus cannot be easily composed and jointly
trained with other deep learning blocks. Most corresponding publications claim to beat or match tree-
based models, but their claims have been put into question: a simple Resnet seems to be competitive
with some of these new models [Gorishniy et al., 2021], and most of these methods seem to fail on new
datasets [Shwartz-Ziv and Armon, 2021]. Indeed, the lack of an established benchmark for tabular
data learning provides additional degrees of freedom to researchers when evaluating their method.
Furthermore, most tabular datasets available online are small compared to benchmark:

e R R e AN A R R g e T e et
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Why do tree-based models still outperform deep leaming on tabular data?

< ZAE H WS Pfst

A.l.1 Numerical classification

OpenML  benchmark:
taskisort=tasks_included&id=298

[Data Set 4571

A 1.3  Categorical classification

https://www.openml . org/search?type=benchmarkistudy_type=

datmset_same n_samples  n_fesures  odiginal link new lisk
datmset_same n_smmples  m_festres  Owgisal lnk Pew link
electricity 3474 7 g openml.orgd/151 hingeswww.opesml ong/dia41 20
cavertype o0 10 hitps-fopenml.org/d293 it ifwww.opesml org/did4 121 electricity 30474 ) hips:Napezanl 151 R ——
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Why do tree-based models still outperform deep leaming on tabular data?
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Figure 1: Benchmark on medium-sized datasets, with only numerical features. Dotted lines
correspond to the score of the default hyperparameters, which is also the first random search iteration.
Each value corresponds to the test score of the best model (on the validation set) after a specific
number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon

corresponds to the minimum and maximum scores on these 15 shuffles.
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Why do tree-based models still outperform deep leaming on tabular data?

o DU H RS Y M
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Figure 2: Benchmark on medium-sized datasets, with both numerical and categorical features.
Dotted lines correspond to the score of the default hyperparameters, which is also the first random
search iteration. Each value corresponds to the test score of the best model (on the validation set)
after a specific number of random search iterations, averaged on 15 shuffles of the random search
order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.
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Why do tree-based models still outperform deep leaming on tabular data?
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Conclusion
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